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In the 1940s and 1950s, children in Israel were treated for
tinea capitis by irradiation to the scalp to induce epilation.
Follow-up studies of these patients and of other radiation-
exposed populations show an increased risk of malignant and
benign thyroid tumors. Those analyses, however, assume that
thyroid dose for individuals is estimated precisely without er-
ror. Failure to account for uncertainties in dosimetry may
affect standard errors and bias dose–response estimates. For
the Israeli tinea capitis study, we discuss sources of uncer-
tainties and adjust dosimetry for uncertainties in the predic-
tion of true dose from X-ray treatment parameters. We also
account for missing ages at exposure for patients with multi-
ple X-ray treatments, since only ages at first treatment are
known, and for missing data on treatment center, which in-
vestigators use to define exposure. Our reanalysis of the dose
response for thyroid cancer and benign thyroid tumors indi-
cates that uncertainties in dosimetry have minimal effects on
dose–response estimation and for inference on the modifying
effects of age at first exposure, time since exposure, and other
factors. Since the components of the dose uncertainties we
describe are likely to be present in other epidemiological stud-
ies of patients treated with radiation, our analysis may pro-
vide a model for considering the potential role of these
uncertainties. q 2004 by Radiation Research Society

INTRODUCTION

Standard methods for analysis of epidemiological data
assume that covariates are known without error for all
study subjects, even though it is well recognized that as-
signed dose does not perfectly reflect dose to target tissue.
Ignoring misclassified covariates in analysis can bias es-
timates of dose response, distort the shape of the dose–re-
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gov.

sponse relationship, and affect inference on the variation of
the dose response across other factors (effect modifiers) (1).
Adjustment for errors in dosimetry increases dose–response
estimates by about 10% in Japanese atomic bomb survivors
(2, 3), 50–100% in populations exposed to residential radon
(4–8) and 60% in radon-exposed Colorado Plateau uranium
miners, where adjustment also reduces the variation of the
dose response by dose rate (9). Among nuclear workers,
adjustment for dose uncertainties increases standard errors
by about 40% but leaves dose–response estimates for leu-
kemia unchanged (10). Failure to account for uncertainties
during the design of an epidemiological study can reduce
study power (11). Some of these topics were discussed at
a conference on adjustments for errors in radiation studies
(12).

In the current paper, we consider a study which uses a
dosimetry system based on an externally estimated dose-
prediction equation. The use of an external prediction equa-
tion is widely applicable to radiation studies and to epide-
miological studies more generally. For example, dosimetry
for individuals exposed to radiation fallout from nuclear
weapons tests relies on models of dispersal, deposition,
transfer and uptake applied to covariate information from
personal interviews (13, 14). In a large cohort study of
radiological technologists, dosimetry is based on a regres-
sion model using an independent set of film badge mea-
surements and linking those values with radiological pro-
cedure, calendar period, type of facility, and other variables.
The dose estimation equation is then applied to work pat-
terns of individual radiologists in the study population (15).
In an epidemiological case–control study of bladder cancer
in three states in New England, one of us (JHL) is involved
in developing prediction models for arsenic and other pol-
lutants in drinking water based on the regressions of mea-
surements of pollutants from water samples on geological
features, type of aquifer, land use patterns, source of water,
and other factors. The regression models will then be used
with questionnaire data to estimate exposures of study sub-
jects.

In this paper, we examine uncertainties in an Israeli co-
hort study of children exposed to radiation in the treatment
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of tinea capitis and the effects of uncertainties on dose–
response analyses of malignant and benign thyroid tumors.
A link between X irradiation to the head and neck in child-
hood and increased rates of thyroid cancer and benign thy-
roid tumors has been reported widely (16–23). A pooled
analysis of primary data from seven studies confirms the
cancer association (24).

For the Israeli data, Ron et al. (19) used results from
three independent studies of anthropomorphic phantoms
(16, 25, 26) to estimate dose to the thyroid based on age
at first irradiation (A), filtration of the X-ray machine (F),
prescribed radiation exposure in roentgens (R), and number
of treatments. We derive a prediction equation for true dose
based on V 5 (A, F, R) using data from phantom studies,
then apply the prediction equation using A, F, R and num-
ber of treatments from patient records. The presence of
missing values for A, F and R for approximately 12% of
patients adds complexity to the analysis.

While our results may not apply directly to other epi-
demiological studies that base exposure assessment on an
external prediction equation, they may offer insights into
effects of exposure uncertainties to the extent that stochas-
tic mechanisms of those uncertainties are similar.

MATERIALS AND METHODS

Study Population and Disease Ascertainment

The study population consists of 10,834 children who received X-ray
therapy for tinea capitis between 1948–1960 at three main treatment cen-
ters in Israel. For each irradiated subject, a general population comparison
was selected from the Central Population Registry, matched on sex, age
(62 years), country of birth, and year of immigration (61 year), resulting
in 10,834 nonirradiated subjects from the general population. A second
comparison group consists of 5,392 siblings of the irradiated patients,
who did not have tinea capitis. Siblings were matched on age (65 years),
country of origin, and year of immigration (61 year), with preference
given to siblings of the same sex as the irradiated patient. All subjects
either immigrated to Israel from Africa or Asia or were children of fathers
who had immigrated from those regions. The study was reviewed and
approved by the institutional review boards at NIH and at the Chaim
Sheba Medical Center in Israel.

Follow-up methods differed depending on year and tumor type. For
thyroid cancer, follow-up was between 1950–1986. Thyroid cancers in-
cident between 1960–1986 were identified by linking the study roster to
the Israel Cancer Registry, which was established in 1960, and confirmed
through pathology and medical records. Cancers incident between 1950–
1960 were ascertained in a nationwide search of hospital pathology rec-
ords. Benign thyroid tumors, which are not recorded by the Israel Cancer
Registry, were identified through a nationwide search of pathology rec-
ords and limited to 1950–1980. Among irradiated subjects, 44 thyroid
cancers and 55 benign thyroid tumors were ascertained. Among nonir-
radiated subjects, 16 developed thyroid cancer and 41 developed benign
tumors.

Radiotherapy

Patients received radiotherapy to five overlapping fields on the scalp
to induce epilation (19, 26, 27). Patients wore a cap to locate the fields,
with lead shielding covering the face and neck, but were not otherwise
immobilized. Beams were superficial X rays, 70–100 kVp, and either
unfiltered or filtered with 0.5, 0.6 or 1.0 mm aluminum. All patients were
less than 16 years old at treatment.

The usual course of treatment consisted of five sessions over five con-
secutive days, totaling 375 R (9.7 3 1022 C/kg) exposure in air. The
prescribed exposure ranged from 350 to 400 R depending on the treat-
ment clinic (16). Nine percent of patients had further infestation and
received multiple treatments, with repeat treatments occurring one or
more years apart.

Data Preparation

As in Ron et al. (19), we ignore the individual matching and assume
that responses of all subjects are independent. Ignoring matching is jus-
tified for the population-based comparison group since we adjust for the
matching variables. We are not justified in treating siblings as indepen-
dent. However, since there are only six thyroid cancers and six benign
tumors in comparison siblings, none with a treated sibling who developed
thyroid disease, it is unlikely that correctly accounting for sibling depen-
dence, which complicates analysis, has an impact on results. Tinea capitis
is contagious and may affect family members, resulting in the inclusion
of some siblings and cousins in the exposed group. Familial relationships
are not recorded, so we must assume that familial effects on the dose
response are small.

We apply standard Poisson regression methodology (28), using the
Epicure computer program (29). Data are cross-tabulated by sex (two
levels), country of origin (three levels: Africa, Asia, Israel), age at first
treatment in years (eight levels: 0–1, 2–4, . . . , 14–16), number of treat-
ments (three levels: 0, 1, 21), follow-up year (five levels: 1950–1964,
1965–1969, 1970–1974, 1975–1979, 1980–1987), attained age in years
(eight levels: 0–14, 15–19, . . . , 40–44, 451) and dose in centigrays
(cGy) (six levels: 0, 1–7.4, 7.5–14, 15–22.4, 22.5–29, 30–100). For be-
nign tumors, the latter 2-year categories are merged since follow-up was
through 1980. For each cell of the cross-classification, we count person-
years at risk and number of events (thyroid cancers or benign tumors)
and compute person-year weighted means for continuous variables (at-
tained age, dose, etc.). We compute time since first treatment after the
cross-tabulation as attained age minus age at first treatment.

Model for Risk of Disease

We assume that incidence rate for disease outcome (thyroid cancer or
benign tumor) within the ith cell of the cross-tabulation, denoted ri, has
the following form:

r (X, D, a, b) 5 r (X, a)(1 1 b*D),i 0 (1)

where D is total radiation dose to the thyroid, X is a covariate vector, and
a is a vector of parameters describing the disease incidence rate among
nonexposed, r0. The parameter b* represents the dose–response effect.
The relative risk in Eq. (1) is linear in dose; however, for technical rea-
sons we re-parameterize b* as exp(b). Effect modification is modeled by
adding covariates in the multiplicative factor exp(b).

Let W be a vector of recorded information on each subject, including
number of treatments, codes for treatment centers, and age at first treat-
ment. We assume that once covariates (X) and true dose (D) are known,
W provides no additional information on disease occurrence. The regres-
sion calibration approach inserts the expected value of the true dose given
W, denoted E(D z W, u), where u are parameters relating true dose to W.
Assuming rare disease, the relative risk given the observed data X and
W, can be written

r (X, W, a, b, u) 5 r (X, a) [1 1 b*E(D z W, u)].i 0 (2)

If u and E(D z W, u) are known, then true dose can be calculated for
each subject and standard methods used to estimate b. However, it is
more typical that u is unknown. Our approach independently estimates
u, denoted , inserts E(D z W, ) in Eq. (2), and proceeds with standardũ ũ
analyses treating as known. While this approach typically works wellũ
for estimation, it does not account for the estimation of , and thus someũ
ad hoc adjustment may be needed to characterize accurately the variance
of the estimate of b. We previously used a likelihood approach to si-
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TABLE 1
Sources of Uncertainties and Approaches Used in Estimating True Thyroid Dose from Observed Patient Data

for the Israeli Tinea Capitis Study

Sources of uncertainty Approach

Modeling phantom data and extrapolating to all ages at exposure

Phantom emulation of an ‘‘average’’ child, embedded dosimeters,
general errors in calibration

Ignored, assumed minimal effect

Dose adjustment factor for age at treatment relative to the phantom
representation of a 6-year-old child

Assume the physical model is accurate without error

Dose adjustment factor for age at treatment applicable to the study
population

Assume relative physical characteristics by age for U.S. children are
appropriate for Israeli children

Applying the predication model given age, filtration and beam exposure

Within-individual variability Analysis of movement data from Modan (16)
Between-individual uncertainty Analysis of Lee and Youmans data (25), plus sensitivity analysis
Actual exposure to the skin Expert opinion, plus sensitivity analysis

Adjusting for missing patient treatment information

For patients with multiple treatments, unknown ages at second and
subsequent treatments

Randomly select age from empirical distribution of ages, conditional
on age at first treatment and age ,16

For those with multiple treatments at different clinics, unknown or-
der of treatment clinics

Randomly select order of clinics

For clinics with multiple X-ray machines, particular machine used
for each patient unknown

Use weighted prescribed exposure and weighted filtration (see text)

Age at treatment rounded to nearest integer Ignored, assumed minimal effect
Other uncertainty, including variations in machine output, machine

on-time, treatment documentation
Ignored, assumed minimal effect

multaneously estimate b and u and their variances (30). The regression
calibration and the likelihood approaches results in nearly identical esti-
mates, so we present only the regression calibration results.

MODELING RADIATION DOSE UNCERTAINTIES

Our approach to adjust for dose uncertainties requires
three steps. (1) We develop a prediction equation for true
dose D from V 5 (A, F, R) using data from phantom stud-
ies, which incorporates estimates of model uncertainties
and allows computation of the expected true dose, E(D z V).
(2) Patient records do not provide V 5 (A, F, R) for all
treatments and for all subjects. We therefore must adjust
for missing patient data. (3) We combine the prediction
equation with the observed and imputed covariates for each
patient to derive an expected true dose. Table 1 lists the
various uncertainties and our approach.

V 5 (A, F, R) for each exposure is the vector of variables
required for the prediction equation, and W is the vector of
covariates actually available for each patient, i.e. age at first
exposure, number of treatments, and treatment center. The
distinction between W and V is important. V represents var-
iables required by the prediction equation, while W repre-
sents variables actually available for each patient. If patient
information is complete, i.e., W 5 V, then the phantom-
based prediction equation, along with the uncertainties, al-
lows computation of E(D z V). If V is not known, we must
determine the expected true dose given the available data,
E(D z W), by averaging the prediction equation E(D z V) over
the probability distribution of the required variables given
the available data, V z W.

For patients with multiple treatments, we evaluate each
treatment separately and assume that total true dose D is
the sum of j 5 1, . . . , J treatment doses, D 5 Sj Dj.

Dose uncertainties induce two subtleties that affect the
person-years table. Poisson regression requires that cut-
points for factors in the person-years table are fixed and
not random variables. Thus categorization must use true
dose, not estimated dose. While attained age and other fac-
tors are assumed known precisely, dose is known only with
uncertainty. For the regression calibration, we categorize
using expected true dose, i.e. E(D z W, ).ũ

A second subtlety in the person-years table is that num-
ber of treatments and age at treatment is considered fixed
at start of follow-up, although these factors are time-depen-
dent for patients with multiple treatments. Thus precise cat-
egories for these factors at each year of follow-up are un-
known. We include these factors as fixed variables, al-
though we use an imputed age at treatment in the calcula-
tion of true dose. Since only five thyroid cancers and six
benign tumors occur among patients with multiple treat-
ments, this simplification should have little impact.

The Prediction Equation for True Dose D from Predictor
Variables V

Dosimetry for the tinea capitis study is based on exper-
imental studies that exposed phantoms under treatment con-
ditions (16, 25, 26, 31). Initial studies indicated a thyroid
dose of about 0.06 Gy per treatment for a 6-year-old child.
However, concerns about the effects of imperfect position-
ing and patient movement led to additional studies and a
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FIG. 1. Histogram of age at first irradiation for exposed subjects from
the Israeli tinea capitis study.

dose adjustment of 1.5 and an estimated dose for a 6-year-
old child of about 0.09 Gy (16). We do not know if the
true effect on dose of squirming children was captured, but
we nonetheless include this adjustment.

For the dose prediction equation, let g1(·) be thyroid dose
as a function of skin exposure R and filtration F for a 6-
year-old child, A 5 6, and assume that dose is proportional
to exposure for fixed F. Let g2(·) denote the age adjustments
for dose relative to a 6-year-old child. For ages 1, . . . , 15,
the adjustment factors are 1.70, 1.50, 1.39, 1.25, 1.10, 1.00,
0.90, 0.82, 0.74, 0.66, 0.63, 0.60, 0.59, 0.58 and 0.56, re-
spectively. We assume that g2 is the same for males and
females under age 16 years and accurately reflects the im-
pact of age on dose. The adjustments, which reflect differ-
ent head and neck sizes, are larger for younger children
since their thyroid glands are closer to the radiation source.
Although there are some phantom data based on skulls from
children of different ages (25), data are insufficient to check
the variation of dose with age at treatment (i.e. size of the
phantom) empirically, so we assume that these adjustment
factors relative to the referent age of the phantom are
known. The age adjustment factors were developed for U.S.
children, so we must assume that the factors reflect the
same relative relationship in the treated Israeli children.

Based on phantom data (16, 25), we assume the follow-
ing model for D given V 5 (A, F, R):

log(D) 5 log[g (R, F) 3 g (A) 3 error]1 2

25 log(R) 1 u 1 u F 1 log(C ) 1 « 1 « 1 « ,0 1 A w b t

where u0 and u1 are unknown parameters and «w, «b and «r

are random errors representing within-individual, between-
individual, and random uncertainties, respectively. We as-
sume that uncertainties are independent and normally dis-
tributed, with mean zero and standard deviations sw, sb and
sr, respectively, thus implying that D is lognormally dis-
tributed.

The within-individual random uncertainty «w reflects the
different thyroid doses if a child were irradiated twice under
the same prescribed conditions, due to movement during
treatment and differences in positioning the body for treat-
ment. The between-individual random uncertainty «b re-
flects the different thyroid doses for different children of
identical ages under ideal machine conditions, due to dif-
ferences in head size and shape. The uncertainty «r reflects
additional random uncertainty. Phantom data are not suffi-
cient to jointly estimate u0 and u1, their variances, and sw,
sb and sr. We therefore estimate these parameters using
various data sources. We estimate sw 5 0.17, based on 13
degrees of freedom, from the data of Modan, in which a
phantom was repeatedly repositioned and reirradiated. An
estimate of sb from a study of three phantoms (25) is sb

5 0.49, based on two degrees of freedom. There are no
data for estimating sr. A study of a single X-ray machine
found that the actual skin exposure might differ from the
prescribed amount by 15% or more (26). The physicist

among us (MS) believes that 25% is a better estimate. The
values of these estimates are assessed by a sensitivity anal-
ysis.

With 0 5 23.9 and 1 5 0.5 estimated from the dataũ ũ
of Modan, the mean of a lognormal distribution is

E[D z V 5 (A, R, F)]
2 2 2s 1 s 1 sw b r25 C R exp 23.9 1 0.5F 1 . (3)A 1 22

For example, for a 6-year-old (CA 5 1.0), with R 5 375,
F 5 0.5 filtration, w 5 0.17, b 5 0.49, and r 5 0.25,ŝ ŝ ŝ
the expected true dose is 375 3 exp(23.9 1 0.5 3 0.25
1 0.17) 5 10.2 cGy.

Modeling Dose Predictor Variables V from Available
Patient Data W

This step is necessary because patient data are not com-
plete for all subjects. When data are missing or indeter-
minant, we link data for W for each subject [age at first
treatment, treatment clinic(s), year of first treatment, and
number of treatments] to clinic-specific information (types
of X-ray machines, filtration, standard treatment protocols,
and machine settings) to determine the required variables
V 5 (A, F, R) for the dose prediction model. For example,
we know only age at first treatment for those with multiple
treatments and therefore impute values for ages of second
and later irradiations. Figure 1 shows a histogram of ages
at first irradiation. For those with multiple treatments, we
impute an age at subsequent treatment by randomly select-
ing an age from the histogram, conditional on age at prior
treatment plus 1 year, the minimum time between treat-
ments, and treatment under age 16.

Dose to the thyroid depends on the prescribed exposure
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TABLE 2
Information on X-Ray Machines Used at the Treatment Centers and Approach to the Estimation of Filtration

and Exposure

Location
Percentage of
all treatments Machine

Prescribed

Filtration Exposure

Nominal

Filtration Exposure

Imputed value for location

Filtration Exposure

Center 1

Center 2

Center 3

72%

11%

13%

1
2
3
4
1
2
1
2

0.5
0.5
0.5
0.6
0.0
0.0
0.5
0.5

400
384
383
NAa

350
350
425
425

0.5
0.5
0.5
0.6
0.0

0.5

400
384
383

U[350,425]
350

425

0.5 w prob 0.75
0.6 w prob 0.25

nominal value

nominal value

400 w prob 0.25
384 w prob 0.25
383 w prob 0.25
U[350,425] w prob 0.25
nominal value

nominal value

Unknown
Abroad

Other

1.6%
1.9%

0.8%

3 0.5
1.0
NA

NA

425
350–400

NA

NA

NA
NA

NA

U[350,425]
U[350,425]

U[350,425]

1.0
0.0, w prob 0.10
0.5, w prob 0.85
1.0, w prob 0.05
0.0, w prob 0.10
0.5, w prob 0.85
1.0, w prob 0.05

nominal value
nominal value

a Not available.

at a specified distance and beam filtration, which were
known for most X-ray machines at the various centers (Ta-
ble 2). However, the precise machine used on a particular
patient was not recorded. For some patients the treatment
center was abroad or unknown. For those with multiple
treatments, the sequence of the treatment centers was not
known. Table 2 shows the imputation approaches we use.
For example, in treatment centers 2 and 3, machines had
common filtrations and nominal exposures, although at dif-
ferent values. In treatment center 1, there were four ma-
chines, with filtrations (0.5, 0.5, 0.5, 0.6) and nominal ex-
posures (400, 384, 383, NA), where NA denoted not avail-
able. For treatment center 1, we assume that the filtration
was 0.5 with probability 0.75 and 0.6 with probability 0.25.
For nominal exposures, we assume that the distribution was
400, 384, 383 and distributed uniformly between 350 and
425, reflecting the range of nominal exposures recorded in
the various centers, each with probability 0.25. For those
with an unknown treatment center, we assume that filtration
was 1.0, and nominal exposure was distributed uniformly
between 350 and 425. For those irradiated abroad, we as-
sume that nominal exposure was distributed uniformly be-
tween 350 and 425, and assume filtration values (0.0, 0.5,
1.0) with probabilities (0.10, 0.85, 0.05), a distribution in
keeping with the observed filtrations.

Among 27,060 children, 5,451 (20.1%) and 15,799
(58.4%) immigrated themselves or had a father who had
immigrated from Asia or Africa, respectively. The remain-
ing 5,810 (21.5%) children were born in Israel but had a
father who immigrated from Asia or Africa. Ninety-three
percent of Asian children and 79% of African children had
no listed month of birth, and we assume that birth occurred
on June 15. Nearly all children of Israeli birth had a listed

birth month. Dates of cohort entry were known, but uncer-
tainty in birth month meant that ages at first treatment for
patients and ages at entry for comparison subjects were
accurate only to the nearest integer. Birth month for those
with a complete birth date was distributed uniformly
throughout the year, suggesting no systematic bias from this
age rounding.

Finally, we assume that all other sources of random un-
certainty, such as fluctuations in machine power output, ma-
chine on-time, treatment records, etc., were minimal.

Combining the Dose Prediction Model and Patient Data

The final step is to compute the expected true dose from
the available patient data and the prediction equation. For
a patient with J treatments, the expected dose is

L

E(D z W, û) 5 E(D z V , û) f (V z W ) dV , (4)O E j j j j j
j51

where E(Dj z Vj, ) is dose from the prediction equation, andû
the determination of required data from available data,
Vj z Wj, is described above. A Monte Carlo approach is used
to evaluate Eq. (4) by taking K 5 100 random samples of
Vj 5 (Aj, Fj, Rj) from the distribution of Vj z Wj to get the
approximation,

K J

21E(D z W, û) ø K C RO O jA j
k51 j51

2 2 2s 1 s 1 sw b r23 exp 23.9 1 0.5F 1j1 22

where values for , and replace , and .2 2 2 2 2 2ŝ ŝ ŝ s s sw b r w b r
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TABLE 3
Distribution of Subjects, Mean Doses, and

Incidence Rate for Thyroid Cancer and Benign
Tumor (Events per Person-Year of Follow-up) by

Number of Courses of Treatment

No. of
courses

No. of
subjectsa

Mean dose

Original Model

Rate (310,000 person-years)

Cancer Benign
Ade-
noma Nodule

0
1
2
3
4

16,226
9,814

904
110

6

0.0
8.4

17.5
26.0
27.5

0.0
9.9

18.6
26.4
28.7

0.32
1.32
1.79
0.0b

0.0b

1.05
2.05
2.21
3.64
0.0b

0.43
1.05
0.44
0.0b

0.0b

0.63
1.00
1.77
3.64
0.0b

Note. Doses in cGy based on original doses or the expected true dose
based on the modeling of dosimetry errors.

a Includes 44 thyroid cancers and 55 benign tumors (26 adenomas and
29 nodules) among exposed, and 16 thyroid cancers and 41 benign tumors
(17 adenomas and 24 nodules) among nonexposed.

b No observed events.

FIG. 2. Scatter plots of estimated true doses and original doses, 45-degree line, and the fitted linear least-squares
line by number of radiation treatments.

RESULTS

Expected true doses are generally larger than original
doses. Person-year weighted means for original doses and
expected true doses were 9.4 and 10.8 cGy, respectively,
for treated patients, 10.1 and 11.6 for thyroid cancer cases,
and 10.2 and 11.5 cGy for benign tumor cases. A total of

1,020 of 10,832 irradiated patients (9.4%), including 5 of
44 thyroid cancer cases (11.4%) and 6 of 55 benign tumors
(10.9%), had more than one treatment (Table 3). Mean ex-
pected doses are higher than mean original doses for each
category of number of treatments. Figure 2 shows expected
true doses and original doses, the 45-degree line, and the
linear least-squares regression line. For one treatment, ex-
pected dose is generally higher than original dose, primarily
due to the mean of the lognormal distribution being higher
than the median. Slopes of the fitted lines for patients with
multiple treatments are less than one (Fig. 2), indicating
that higher original doses correspond to progressively lower
true doses. This pattern is due to the age adjustment for
multiple exposures and to failure of the original doses to
account for ages at second or later treatment.

Table 4 shows numbers of exposed cases and estimated
ERRs per centigray using original doses or expected true
doses, and the relative impact of effect modifiers. Since
original doses are generally less than expected true doses,
the ERR/cGy for thyroid cancer estimated using expected
true doses (0.31 with 95% CI 0.14–0.64) is 12% smaller
than the estimate using original doses (0.35 with 95% CI
0.16–0.73) (Fig. 3). Differences in the ERR/cGy using un-
adjusted and adjusted doses are small, and the use of ex-
pected dose does not significantly improve model fit com-
pared to observed dose (P 5 0.73). Similar results occur
for benign tumors.



365ADJUSTING FOR DOSE UNCERTAINTIES

FIG. 3. Relative risk for thyroid cancer and benign thyroid tumors by
thyroid dose using the original dose or the error-adjusted expected true
dose given the original dose. Individual relative risk estimates located at
the category-specific, person-year weighted mean dose. Fitted dose re-
sponse based on a linear relative risk model.

Tests of homogeneity of the ERR/cGy by sex are non-
significant, although the results suggest different sex effects
in the dose response for thyroid cancer and benign tumors
(Table 4). The dose response for males relative to females
is about 0.2 using either dose estimate but about 2.0 for
benign tumors. The differences by sex for thyroid cancer
and benign nodules, however, are not statistically signifi-
cant (for example, P 5 0.15 using expected true dose).

Data on sex, number of treatments, time and age-related
factors are assumed known with a high degree of accuracy.
The relative impact of those factors and the P values for
tests of homogeneity are unaffected by uncertainty in do-
simetry (Table 4). Effects of radiation exposure on thyroid
cancer risk are highest in patients exposed under the age
of 5, remain elevated 25 years and more after initial irra-

diation, and are smaller in patients with multiple treatments,
although tests of homogeneity are not statistically signifi-
cant.

DISCUSSION

Our analysis characterizes uncertainties in thyroid dosim-
etry for childhood irradiation for the treatment of tinea cap-
itis and extends the analysis in Schafer et al. (30). The
current paper demonstrates the use of an external prediction
equation in conjunction with adjustment through regression
calibration and presents a more complete analysis of thy-
roid cancer, as well as an analysis of benign thyroid tumors.
Dosimetric uncertainties are due to a variety of factors, in-
cluding uncertainty in the model for true dose based on
studies of phantoms, random differences in sizes of children
of a given age, and random movements by children during
treatment. Additional uncertainties arise from missing data
for ages at subsequent exposure for those with multiple
treatments and for treatment center. Results are reassuring
that within the limitations of our understanding uncertain-
ties in dosimetry have minimal impact on estimates of
ERR/cGy and on statistical inference on the role of age at
treatment, time since exposure, and other effect modifiers
for both thyroid cancer and benign thyroid tumors. The
relationship between original doses and our predicted doses
varies by categories of number of treatments and highlights
the importance of the adjustment for age at treatment in the
dosimetry for patients with multiple treatments.

While our assessment includes most major sources of
uncertainty, we do not explicitly account for all uncertain-
ties. In the prediction equation, we assume that measure-
ment error associated with the conduct of the phantom stud-
ies is minimal, including instrument calibration and eval-
uation of embedded dosimeters, that the adjustment factors
for physical differences in ages at treatment relative to the
referent 6-year-old child are correct, and that age adjust-
ment factors apply equally to females and males and to
Israeli children of diverse ethnic backgrounds.

External dose-prediction equations are widely applicable
and in the simplest setting are very intuitive. For subjects
i 5 1, . . . , n, suppose there is a linear relationship between
disease response Yi and true dose Di, denoted E(Yi z Di) 5
b0 1 b1Di. However, the primary data set yields Yi and
only a vector of surrogate variables Vi, which may be
viewed as Di recorded with uncertainty or more generally
a vector of variables that characterize Di. (Our analysis was
further complicated by some patients with missing values
for V.) An independent set of data consisting of Dj and Vj

for j 5 1, . . . , m exists, with Dj and Vj defined by the
relationship E(Dj z Vj) 5 u0 1 u1Vj. (This relationship was
loglinear in our data.) A sensible approach estimates u0 and
u1 from the secondary data, then uses those estimates to
predict a value for Di for each subject in the primary data,
i.e. E(Di z Vi). The Yi’s and the predicted variables E(Di z Vi)
are then used to estimate the risk parameters b0 and b1. The
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TABLE 4
Excess Relative Riska (ERR) per cGy for Thyroid Cancer and Benign Tumors (Adenomas and Nodules) and

95% Confidence Intervals (CI), Overall and by Categories of Other Factors

Factor

Cancer

Original Model Nb

Benign

Original Model N

Overall ERR/cGy
(95% CI)

0.351
(0.16, 0.73)

0.308
(0.14, 0.64)

44 0.136
(0.06, 0.26)

0.119
(0.05, 0.23)

55

Sex

Female
Male
Pc

0.456
0.234
0.17

0.400
0.245
0.18

37
7

0.118
1.883
0.46

0.098
1.927
0.49

45
10

Attained age

,20
20–29

$30
P

2.570
0.236
1.569
0.60

2.518
0.210
1.569
0.61

13
17
14

0.197
0.206
0.095
0.18

0.226
0.179
0.109
0.19

3
39
3

Years since first exposure

,15
15–19

0.628
0.507

0.620
0.444

14
11

—
0.107

—
0.094

7
17

20–24
$25
P

0.775
0.514
0.81

0.777
0.527
0.81

10
9

2.412
0.262
0.02

2.425
0.298
0.02

29
2

Age at first exposure

,5
5–9

$10
P

0.505
0.412
0.566
0.17

0.446
0.419
0.546
0.17

21
14
9

0.247
0.352
0.115
0.05

0.216
0.363
0.108
0.05

20
21
14

No. of treatments

1
$2
P

0.394
0.581
0.32

0.337
0.637
0.42

39
5

0.152
0.691
0.54

0.129
0.725
0.61

49
6

Notes. Doses from original values or expected true dose based on model of uncertainties. Bold font denotes ERR/cGy for the base level category
and standard font denotes the proportional effect of the dose response relative to the base level category.

a Parameter estimates adjusted for attained age, sex and ethnicity.
b Number of exposed cases. There were 16 (cancer), 42 (benign tumor), 17 (adenoma), and 25 (nodule) unexposed cases.
c P denotes value for test of homogeneity of dose–response relationship.
d Denotes that model did not converge to a finite estimate.

use of the expected value of true dose D given the observed
data V in the risk analysis is called regression calibration
(1).

If the prediction equation is precisely true without un-
certainty and if predictor variables are known for all sub-
jects in the primary data, then standard statistical methods
apply, since the equation produces true doses. More typi-
cally, the prediction includes uncertainty. One source of
uncertainty arises from the estimation of the parameters in
the prediction equation. The prediction is thus an ‘‘esti-
mate’’ of true dose. In the statistical literature, this type of
uncertainty is often called ‘‘classical error’’, which tends to
reduce effects and create curvilinearity. With a prediction
equation, this uncertainty represents a ‘‘shared error’’ com-
mon to all subjects (32). A second source of uncertainty
results from the random deviation of the (log) dose predic-
tion for each subject from the (log) true dose. This latter
uncertainty is called (multiplicative) ‘‘Berkson error’’. For
rare diseases and relative risks which are approximately

linear in dose, Berkson error tends to increase variance
while inducing minimal bias. Technical details of analyses
with external prediction equations are given in Schafer et
al. (30).

The prediction equation is applied to patient data ac-
counting for missing data on treatment clinic, the exact X-
ray machine used if more than one, nominal exposure, and
ages at subsequent treatments for those with multiple treat-
ments. The imputation of these missing data are presumably
unbiased for the true covariate data, and so only increase
variability. The extent to which we do not correctly account
for the random process generating the missing data or ig-
nore systematic influences is unknown; however, any resid-
ual random or systematic errors are likely small.

We find parameter estimates, standard errors and infer-
ences essentially unchanged, after accounting for uncertain-
ty. The results in Table 4 are based on random errors in
Eq. (4) of (sw, sb, sr) 5 (0.17, 0.49, 0.15) but are similar
when standard errors for the uncertainties are specified as
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TABLE 4
Extended

Adenoma

Original Model N

Nodule

Original Model N

0.138
(0.02, 0.37)

0.124
(0.02, 0.32)

26 0.135
(0.04, 0.30)

0.115
(0.03, 0.26)

29

0.126
1.553
0.75

0.114
1.475
0.79

22
4

0.114
2.105
0.49

0.097
2.062
0.50

23
6

—d

0.207
—

0.04

—
0.185

—
0.04

2
19
5

—
0.208
0.291
0.09

—
0.178
0.303
0.09

1
20
8

0.872
0.155

0.873
0.136

5
9

—
0.096

—
0.083

2
8

1.405
—

0.29

1.423
—

0.29

12
0

3.305
1.495
0.02

3.325
1.551
0.02

17
2

0.156
0.709
1.087
0.89

0.139
0.728
1.037
0.91

7
10
9

0.346
0.246

—
0.002

0.303
0.252

—
0.001

13
11
5

0.200
0.039
0.08

0.171
0.033
0.10

25
1

0.118
1.465
0.59

0.100
1.558
0.54

24
5

(0.17, 0.25, 0.25) or (0.5, 0.5, 0.5). These parameters spec-
ify Berkson error from the uncertainty in expected true dose
for the prediction equation. Even extreme values appear not
to influence the estimates of dose response or effect mod-
ification. The error model, Eq. (3), includes two parameters
(u0 and u1), which define the relationship between added
filtration and dose and are estimated from phantom studies.
This uncertainty results in classical error. Results suggest
that this classical error is small relative to random predi-
cation error from phantom studies.

The confidence intervals in Table 4 are similar using
original doses or expected true doses because the regression
calibration does not account for the variability arising from
measurement error. The full likelihood approach, which
does account for measurement errors, results in slightly
larger standard errors (30). Those results suggest that upper
and lower confidence limits should be multiplied and di-
vided by a factor of about 1.06, respectively.

Although patterns of effect modification of the dose re-
sponse for thyroid cancer by categories of sex, attained age,
time since exposure, age at first exposure, and number of
treatments are statistically consistent with homogeneity, the
direction of the dose–response variations is similar to the
patterns found in a pooled analysis of seven studies (24).

In particular, the pooled analysis indicates an increased risk
with younger ages at exposure, a pattern suggested in the
current analysis. It may be argued that the age-at-exposure
variation is due at least in part to the age adjustment that
is applied in the dosimetry, with the increased risk at youn-
ger ages due to adjustment parameters which are too small.
While we cannot entirely rule this out, the age adjustment
factors for children under age 5 years would need to be
nearly doubled to account entirely for the greater radiation
effect at the youngest ages at exposure. The age adjustment
factors were established independently of the tinea capitis
study and were based on physical characteristics of chil-
dren. In addition, similar patterns of risk with age at ex-
posure are observed consistently in studies of thyroid dis-
ease and childhood radiation exposure (24). Thus it seems
unlikely that the age-at-exposure effects are entirely the re-
sult of the age adjustment.

In summary, our analysis of thyroid cancer and benign
thyroid tumors in the Israeli tinea capitis study, accounting
for a variety of dosimetric uncertainties, indicates that these
uncertainties have relatively little influence on the estimated
dose response and on inference regarding potential effect
modifiers. The similarity of the unadjusted and the adjusted
results in the Israeli data is the result of the linearity of
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relative risk in dose and the predominance of Berkson-type
error. Since the components of the dose uncertainties we
describe are likely to be present in other epidemiological
studies of patients treated with radiation, our analysis may
provide a model for considering the potential role of these
uncertainties.
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